机器学习中的概率统计应用实践 完整版
一课讲透机器学习概率统计,快速打造算法基础核心能力
第1章 概率统计课程导学 试看1 节 | 7分钟
介绍课程安排以及课前准备工作。
第2章 统计思维基石:条件概率与独立性6 节 | 35分钟
条件概率是概率统计世界的理论基石,这一讲将从一般性的概率过渡到条件概率,利用条件概率来描述事件之间的独立性,并进行概念延伸:一方面从独立性延伸到条件独立性;另一方面从条件概率延伸到全概率公式,进而引出贝叶斯公式以及先验概率和后验概率的概念...
第3章 聚焦基本元素:深入理解随机变量11 节 | 82分钟
这一讲介绍离散型和连续型两类随机变量,针对离散型随机变量,重点介绍他的核心要素、分布列以及几种重要概型:二项分布、几何分布和泊松分布;针对连续型随机变量,介绍概率密度函数、数字特征以及几类典型分布:正态分布、指数分布和均匀分布。...
第4章 从一元到多元:探索多元随机变量11 节 | 79分钟
这一讲介绍多元随机变量。首先介绍基础理论,包括:多元随机变量的分布特性、独立性、相关性,比较协方差与相关系数的概念;然后以二元正态分布为例,回归分布特性,分析他的参数形式与几何特征。
第5章 极限思维:大数定律与蒙特卡罗方法10 节 | 48分钟
这一讲主要介绍大数定律及其应用,一方面会重点介绍大数定律和中心极限定理的内涵与其背后蕴含的极限思想,然后介绍蒙特卡洛方法的应用场景和实际案例
第6章 由静到动:随机过程导引7 节 | 33分钟
这一讲对随机过程做一个导引,介绍随机变量与随机过程之间的关系,采用蒙特卡洛方法实际模拟两个有趣的随机过程案例,真实展现随机过程的整体面貌,同时归纳总结最常见的两类重要的随机过程:到达过程和马尔科夫过程
第7章 马尔科夫链(上):转移与概率7 节 | 26分钟
这一讲主要介绍马尔科夫链概率转移的基本特征。首先解析离散时间、状态空间和转移概率三大核心要素,并借助转移概率图进行集中展示。然后详细解剖马尔科夫链的重要特性:马尔科夫性,学习利用状态转移矩阵描述马尔科夫链,并进行多步转移和路径概率的计算...
第8章 马尔科夫链(下):极限与稳态5 节 | 21分钟
这一讲介绍马尔科夫链的重要性质:极限与稳态。具体分析马尔科夫链的极限与其初始状态无关和有关的不同情况,同时引出吸收态和收敛性的概念。接着基于马尔科夫链可达、常返与周期性的概念,聚焦马尔科夫链的稳态,学习稳态的分析、判定和求法...
第9章 隐马尔科夫模型(上):明暗两条线7 节 | 18分钟
这一讲介绍隐马尔科夫模型的基本特征,重点聚焦模型的观测随机序列和状态随机序列这明暗两条线。利用盒子摸球和婴儿的日常生活案例来演示模型的运行机理,结合模型的外在表征,解析推动模型运转的内核三要素:状态转移矩阵、观测概率矩阵和初始隐含状态概率向量,并揭示模型的关键性质:齐次马尔科夫性和观测独立性。...
第10章 隐马尔可夫模型(下):概率估计与状态解码12 节 | 53分钟
这一讲介绍如何利用隐马尔科夫模型进行概率估计和状态解码。首先介绍这两个问题的应用场景,然后分别详细介绍利用前向概率算法进行概率估计,以及利用维特比算法实现状态解码的具体过程
第11章 推断未知:统计推断的基本框架6 节 | 24分钟
这一讲作为统计推断内容的概念导入,介绍统计推断的基本框架,首先介绍统计学的两大分类以及统计推断所要研究的内容,接着介绍统计推断中,总体、样本、统计量这几个核心概念,然后分析估计量的偏差性以及有偏、无偏估计...
第12章 探寻最大可能:极大似然估计法9 节 | 23分钟
这一讲介绍第一种经典的参数估计方法:极大似然估计法,细致分析极大似然估计法中似然函数的由来和方法的核心思想,然后结合实践案例,介绍利用极大似然估计法进行单参数和多参数估计的理论方法
第13章 贝叶斯统计推断:最大后验9 节 | 59分钟
这一讲介绍第二种经典的参数估计方法:贝叶斯统计推断,基于贝叶斯思想详细介绍其理论过程,并重点对先验分布选取、观测数据获取和后验分布计算的过程进行细致分析,同时对共轭先验等重要概念进行解读
第14章 近似推断的思想和方法11 节 | 35分钟
这一讲开始介绍统计推断中的近似推断,细致分析近似推断以及随机近似方法的概念和背景,并围绕近似推断中的核心环节:近似采样方法,重点介绍接受-拒绝采样和重要性采样,作为马尔科夫链-蒙特卡洛方法相关内容的起步
第15章 助力近似采样:基于马尔科夫链的采样过程9 节 | 48分钟
这一讲将马尔科夫链引入到近似采样的过程中,利用马尔科夫链稳态的重要性质,让他成为辅助进行近似采样的有力工具,为最终实践马尔科夫链-蒙特卡洛方法打下重要基础
第16章 马尔科夫链-蒙特卡洛方法详解7 节 | 39分钟
这一讲详细阐述马尔科夫链-蒙特卡洛方法,并一举解决最核心的关键问题:对于任意给定的目标分布,如何找到以他为唯一平稳分布的马尔科夫链,并且基于马尔科夫链采样的方法,实现对其的近似采样
**** Hidden Message *****
确实是难得好帖啊,顶先 珍惜生命,果断回帖。 正需要,支持楼主大人了! 啥也不说了,感谢楼主分享哇! 啥也不说了,感谢楼主分享哇! 正需要,支持楼主大人了! 啥也不说了,感谢楼主分享哇! 啥也不说了,感谢楼主分享哇! 确实是难得好帖啊,顶先