dmz社区

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 26130|回复: 384

硅谷专家讲解模型评估和验证视频教程附源码英语中文字幕 253课

  [复制链接]

该用户从未签到

28

主题

7799

帖子

994

积分

终身会员[A]

Rank: 7Rank: 7Rank: 7

积分
994

发表于 2017-11-26 00:51:50 | 显示全部楼层 |阅读模式

本站资源全部免费,回复即可查看下载地址!

您需要 登录 才可以下载或查看,没有帐号?立即注册

x

课程目录:

1-模型评估和验证简介

2-模型评估 - 你将看到什么

3-模型评估 - 你将学到什么

5-模型评估 - 你将做什么

7-先修要求

8-哪个专业?

8-哪个专业?答案

9-用一个数字描述数据

10-数据集的众数答案

10-选择哪个数字?

11-分布的众数

11-数据集的众数

12-众数 - 负偏斜分布 答案

12-众数 - 负偏斜分布

13-众数 - 均匀分布

13-众数 - 均匀分布答案

14-不止一个众数?

14-不止一个众数?答案

15-分类数据的众数 答案

15-分类数据的众数

16-众数的更多信息!

16-众数的更多信息!答案

17-找出均值 答案

17-找出均值

18-找出均值的步骤 答案

18-找出均值的步骤

19-迭代过程 答案

19-迭代过程

20-有用的符号

21-均值的特性

21-均值的特性答案

22-含异常值的均值 答案

22-含异常值的均值

23-可以期望多高的薪资? 答案

23-可以期望多高的薪资?

24-北卡莱罗纳大学

25-中位数的要求 答案

25-中位数的要求

26-找出中位数

26-找出中位数答案

27-含异常值的中位数

27-含异常值的中位数答案

28-找出含异常值的中位数 答案

28-找出含异常值的中位数

29-中心测量值

30-对中心测量值排序 1 答案

30-对中心测量值排序 1

31对中心测量值排序 2

31-对中心测量值排序 2答案

32-使用中心测量值来比较

33-优达学城员工的 Facebook 好友数 - 均值 答案

33-优达学城员工的 Facebook 好友数 - 均值

34-优达学城员工的 Facebook 好友数 - 中位数

35-中位数位置公式

36-小结 - 中心测量值 答案

36-小结 - 中心测量值

37-真棒!

38-社交网络工作人员的薪酬 答案

38-社交网络工作人员的薪酬

39-你应该注册帐号吗?

40-有什么不同 答案

40-有什么不同?

41-量化数据的分布形态 答案

41-量化数据的分布形态

42-值域是否改变? 答案

42-值域是否改变?

43-扎克伯格的薪酬:一个异常值 答案

43-扎克伯格的薪酬:一个异常值

44-砍掉尾巴

45-Q1 在哪里?

45-Q1 在哪里?答案

46-Q3 - Q1

47-IQR

48-IQR 答案

49-什么是异常值? 答案

49-什么是异常值?

50-定义异常值

50匹配对应的箱线图 答案

50匹配对应的箱线图 答案

51-均值在 IQR 中吗?

51-均值在 IQR 中吗?答案

52-IQR 的不足

53-衡量差异性的方法 答案

53-衡量差异性的方法

54-计算均值 答案

54-计算均值

55-离均差 答案

55-离均差

56-平均偏差 答案

56-平均偏差

57-平均偏差的公式 答案

57-平均偏差的公式

57-平均偏差的公式

58- 摆脱负值,开心起来

58-摆脱负值,开心起来 答案

59-绝对偏差 答案

59-绝对偏差

60-平均绝对偏差 答案

60-平均绝对偏差

61-平均绝对偏差的公式 答案

61-平均绝对偏差的公式

62-平方偏差 答案

62-平方偏差

63-平方和

64-平方和

65-平均平方偏差

65-平均平方偏差 答案

66-用语言解释平均平方偏差

67-一维的数据 答案

67-一维的数据

68-标准偏差 SD

69-计算标准偏差 SD 答案

69-计算标准偏差 SD

70-社交网络工作人员薪酬的 SD 值 答案

70-社交网络工作人员薪酬的 SD 值

71-用语言解释标准偏差 答案

71-用语言解释标准偏差

72-用电子表格计算 SD 值

73-用电子表格计算 SD 值 答案

74-SD 值的重要性

75-找到偏差对应的值 答案

75-找到偏差对应的值

76-所选样本的 SD 值 答案

76-所选样本的 SD 值

77-贝塞耳校正 答案

77-贝塞耳校正

78-澄清样本 SD 值的真正含义

79-举例:果冻豆

81-Numpy

83-Pandas

86-创建新 DataFrame 答案

86-创建新 DataFrame

87-数据框列

89-Pandas 向量化方法

90-平均铜牌数

90-平均铜牌数-答案

91-平均金、银和铜牌数 答案

91-平均金、银和铜牌数

92-矩阵乘法与 Numpy Dot

93-奥林匹克奖牌分数 答案

93-奥林匹克奖牌分数

96-sklearn 使用入门

97-高斯朴素贝叶斯示例

98-有关地形数据的高斯 NB 部署 答案

98-有关地形数据的高斯 NB 部署

99-评估指标

105-准确率的缺陷 答案

105-准确率的缺陷

106-选择最合适的指标

107-混淆矩阵 打啊

107-混淆矩阵

107-混淆矩阵练习 1 答案

108-混淆矩阵练习 1

108-混淆矩阵练习 2 答案

108-混淆矩阵练习 2

109-填充混淆矩阵 答案

109-填充混淆矩阵

110-混淆矩阵:误报 答案

110-混淆矩阵:误报

111-决策树混淆矩阵 答案

111-决策树混淆矩阵

112-精确率和召回率

113-鲍威尔精确率和召回率

113-鲍威尔精确率和召回率答案

114-布什精确率和召回率 答案

114-布什精确率和召回率

115-特征脸方法中的 True Positives 答案

115-特征脸方法中的 True Positives

116-特征脸方法中的 False Positives 答案

116-特征脸方法中的 False Positives

117-特征脸方法中的 False Negatives 答案

117-特征脸方法中的 False Negatives

117-特征脸方法中的 False Negatives-c

118-答案

118-对拉姆斯菲尔德练习 TP、FP、FN

119-精确率公式 答案

119-精确率公式

120-召回率公式 答案

120-召回率公式

132-偏差、方差和特征数量 答案

132-偏差、方差和特征数量

133-偏差、方差和特征数量 2 答案

133-偏差、方差和特征数量 2

134-肉眼过拟合

135-数据类型 1 - 数值数据

136-数据类型 2 - 分类数据

137-数据类型 3 - 时间序列数据

138-数据类型 3 - 时间序列数据 答案

138-数据类型 3 - 时间序列数据

139-在 Sklearn 中训练测试分离

140-K 折交叉验证 答案

140-K 折交叉验证

141-Sklearn 中的 K 折 CV

142-针对 Sklearn 中的 K 折的实用建议

143-为调整参数而进行的交叉验证

146-维度灾难

147-维度灾难 2

4-构建完整的模型.png

6-统计学回顾与支持库.png

14-不止一个众数? 练习.jpg

15-分类数据的众数 练习.jpg

16-众数的更多信息!练习.jpg

17-找出均值 练习.jpg

18-找出均值的步骤 练习.jpg

21-均值的特性.jpg

22-含异常值的均值 练习.jpg

23-可以期望多高的薪资?.jpg

25-中位数的要求.jpg

30-对中心测量值排序 1.jpg

33-优达学城员工的 Facebook 好友数 - 均值.jpg

72-Sample_Social_Networkers_Salary_n=100_Lesson_4.xlsx

80-Numpy 和 Pandas 教程.png

82-Numpy Playground.py.txt

84-Pandas Playground - 系列.txt

85-Pandas Playground - 数据框.txt

86-创建新 DataFrame.txt

88-Pandas Playground - 索引数据框.txt

90-平均铜牌数.txt

91-平均金、银和铜牌数.txt

93-奥林匹克奖牌数.txt

94-安装 scikit-learn.png

94-安装 scikit-learn.txt

95.png

100-选择合适的指标.txt

101-分类和回归.txt

102-分类指标与回归指标.txt

103-分类指标.txt

104-准确率.txt

121-F1分数.txt

122-回归指标.txt

123-平均绝对误差.txt

124-均方误差.txt

125-回归分数函数.txt

126-误差原因.txt

127-偏差造成的误差.txt

128-Linear Learner, Quadratic Data.txt

129-方差造成的误差.txt

130-Noisy Data, Complex Model.txt

131-改进模型的有效性.txt

144-Sklearn 中的 GridSearchCV - 练习.txt

144-Sklearn 中的 GridSearchCV.txt

145-总结.txt

148-学习曲线.txt

148-学习曲线2.txt

149-理想的学习曲线.txt

150-模型复杂度.txt

151-学习曲线与模型复杂度.txt

152-模型复杂度的实际使用.txt

153-摘要.txt

154-问题和报告结构.txt

154-项目.txt

课程下载:


游客,如果您要查看本帖隐藏内容请回复
温馨提示:
1、本站所有内容均为互联网收集或网友分享或网络购买,本站不破解、不翻录任何视频!
2、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除并致以最深的歉意!
3、本站资源仅供本站会员学习参考,不得传播及用于其他用途,学习完后请在24小时内自行删除.
4、本站资源质量虽均经精心审查,但也难保万无一失,若发现资源有问题影响学习请一定及时点此进行问题反馈,我们会第一时间改正!
5、若发现链接失效了请联系管理员,管理员会在2小时内修复
6、如果有任何疑问,请加客服QQ:1300822626 2小时内回复你!
回复

使用道具 举报

该用户从未签到

51

主题

7829

帖子

989

积分

终身会员[A]

Rank: 7Rank: 7Rank: 7

积分
989

发表于 2018-6-17 01:06:07 | 显示全部楼层
谢谢楼主,共同发展
回复 支持 反对

使用道具 举报

该用户从未签到

40

主题

7892

帖子

1017

积分

终身会员[A]

Rank: 7Rank: 7Rank: 7

积分
1017

发表于 2018-6-17 08:46:49 | 显示全部楼层
正需要,支持楼主大人了!
回复 支持 反对

使用道具 举报

该用户从未签到

33

主题

7990

帖子

1018

积分

终身会员[A]

Rank: 7Rank: 7Rank: 7

积分
1018

发表于 2018-7-12 09:49:37 | 显示全部楼层
谢谢楼主,共同发展
回复 支持 反对

使用道具 举报

该用户从未签到

32

主题

7817

帖子

974

积分

终身会员[A]

Rank: 7Rank: 7Rank: 7

积分
974

发表于 2018-7-13 18:19:32 | 显示全部楼层
有竞争才有进步嘛
回复 支持 反对

使用道具 举报

该用户从未签到

29

主题

7959

帖子

979

积分

终身会员[A]

Rank: 7Rank: 7Rank: 7

积分
979

发表于 2018-7-15 22:22:25 | 显示全部楼层
找到好贴不容易,我顶你了,谢了
回复 支持 反对

使用道具 举报

该用户从未签到

27

主题

7861

帖子

1048

积分

终身会员[A]

Rank: 7Rank: 7Rank: 7

积分
1048

发表于 2018-7-18 22:27:08 | 显示全部楼层
好好 学习了 确实不错
回复 支持 反对

使用道具 举报

该用户从未签到

35

主题

7850

帖子

1098

积分

终身会员[A]

Rank: 7Rank: 7Rank: 7

积分
1098

发表于 2018-7-28 09:38:50 | 显示全部楼层
我是来刷分的,嘿嘿
回复 支持 反对

使用道具 举报

该用户从未签到

17

主题

7762

帖子

971

积分

终身会员[A]

Rank: 7Rank: 7Rank: 7

积分
971

发表于 2018-7-29 15:03:05 | 显示全部楼层
学习了,谢谢分享、、、
回复 支持 反对

使用道具 举报

该用户从未签到

27

主题

7649

帖子

956

积分

终身会员[A]

Rank: 7Rank: 7Rank: 7

积分
956

发表于 2018-8-1 06:10:46 | 显示全部楼层
学习了,谢谢分享、、、
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|小黑屋|本站代理|dmz社区

GMT+8, 2024-12-23 12:01 , Processed in 0.113301 second(s), 37 queries .

Powered by Discuz! X3.4 Licensed

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表