程序人生
课程方向: |
Python |
课程类型: |
框架 项目实战 |
本站资源全部免费,回复即可查看下载地址!
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
适合人群:
1.刚刚研究生或者本科毕业的同学,想在图像领域发展,需要进一步提炼算法能力
2.有一定开发经验,想转到算法岗的朋友们,YOLOV4则是面试的敲门砖
你将会学到:
从零使用PyTorch构建YOLOV4完整的训练代码,并完成车辆行人检测实战
课程目录:
1-1课程介绍
1-2代码与项目介绍
2-1图像卷积
2-2卷积和步长的巧妙配合
2-3人工卷积核产生的效果
2-4Yolov4里的卷积例子
2-5最大池化操作
2-6全连接层讲解
2-7卷积神经网络VGG16_01
2-8卷积神经网络VGG16_02
2-13YOLOV4里的one-hot编码
2-14softmax原理和计算
2-15sigmod和代替softmax
2-16BN操作01
2-17BN操作02
2-18激活函数原理和作用
2-91X1卷积核的用处01
2-101X1卷积核的用处02
2-111X1卷积核的用处03
2-121X1卷积核的用处04(yolo中的1X1预测思想)
3-1YOLOV3网络结构回顾01
3-2YOLOV3网络结构回顾02
3-3YOLOV3网络结构回顾03
3-4强大的模型可视化工具netron
3-5YOLOV4网络结构backbone
3-6YOLOV4网络结构Neck
3-7YOLO网格思想
3-8先验框anchors原理
3-9头部DECODE
3-10YOLO头部总结
3-11从零写代码backbone构建01
3-12从零写代码backbone构建02
3-13从零写代码Neck构建01
3-14从零写代码Neck构建02
3-15从零写代码头部Decode01
3-16从零写代码头部Decode02
3-17代码解读模型推断部分
3-18代码解读使用yolo.cfg解析方式构造网络01
3-19代码解读使用yolo.cfg解析方式构造网络02
4-1模型训练超参部分讲解
4-2训练整体流程
4-3模型训练build_target原理解析01
4-4模型训练build_target原理解析02
4-5模型训练build_target原理解析03
4-6损失函数原理解析01
4-7损失函数原理解析02
4-8从零写代码build_target训练核心函数01
4-9从零写代码build_target训练核心函数02
4-10从零写代码build_target训练核心函数03
4-11从零写代码训练部分基础函数
4-12从零写代码CIOU计算
4-13从零写代码损失函数计算
4-14代码解读基于PyTorch的模型训练01
4-15代码解读基于PyTorch的模型训练02
4-16代码解读基于PyTorch的模型训练03
5-1项目实战总体介绍
5-2权重裁剪技巧(模型训练必备知识)
5-3代码实战pytorch权重裁剪01
5-4代码实战pytorch权重裁剪02
5-5代码实战训练数据集制作
5-6tensorboardX训练可视化工具使用
5-7map和准确召回率计算工具使用
5-8项目效果展示
5-9YOLOV4调参总结
下载地址:
|
温馨提示:
1、本站所有内容均为互联网收集或网友分享或网络购买,本站不破解、不翻录任何视频!
2、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除并致以最深的歉意!
3、本站资源仅供本站会员学习参考,不得传播及用于其他用途,学习完后请在24小时内自行删除.
4、本站资源质量虽均经精心审查,但也难保万无一失,若发现资源有问题影响学习请一定及时点此进行问题反馈,我们会第一时间改正!
5、若发现链接失效了请联系管理员,管理员会在2小时内修复
6、如果有任何疑问,请加客服QQ:1300822626 2小时内回复你!